Papers
Topics
Authors
Recent
Search
2000 character limit reached

From Transformers to Large Language Models: A systematic review of AI applications in the energy sector towards Agentic Digital Twins

Published 3 Jun 2025 in cs.LG and cs.AI | (2506.06359v1)

Abstract: AI has long promised to improve energy management in smart grids by enhancing situational awareness and supporting more effective decision-making. While traditional machine learning has demonstrated notable results in forecasting and optimization, it often struggles with generalization, situational awareness, and heterogeneous data integration. Recent advances in foundation models such as Transformer architecture and LLMs have demonstrated improved capabilities in modelling complex temporal and contextual relationships, as well as in multi-modal data fusion which is essential for most AI applications in the energy sector. In this review we synthesize the rapid expanding field of AI applications in the energy domain focusing on Transformers and LLMs. We examine the architectural foundations, domain-specific adaptations and practical implementations of transformer models across various forecasting and grid management tasks. We then explore the emerging role of LLMs in the field: adaptation and fine tuning for the energy sector, the type of tasks they are suited for, and the new challenges they introduce. Along the way, we highlight practical implementations, innovations, and areas where the research frontier is rapidly expanding. These recent developments reviewed underscore a broader trend: Generative AI (GenAI) is beginning to augment decision-making not only in high-level planning but also in day-to-day operations, from forecasting and grid balancing to workforce training and asset onboarding. Building on these developments, we introduce the concept of the Agentic Digital Twin, a next-generation model that integrates LLMs to bring autonomy, proactivity, and social interaction into digital twin-based energy management systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.