Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Large Language Models and Their Applications in Roadway Safety and Mobility Enhancement: A Comprehensive Review (2506.06301v1)

Published 19 May 2025 in cs.AI

Abstract: Roadway safety and mobility remain critical challenges for modern transportation systems, demanding innovative analytical frameworks capable of addressing complex, dynamic, and heterogeneous environments. While traditional engineering methods have made progress, the complexity and dynamism of real-world traffic necessitate more advanced analytical frameworks. LLMs, with their unprecedented capabilities in natural language understanding, knowledge integration, and reasoning, represent a promising paradigm shift. This paper comprehensively reviews the application and customization of LLMs for enhancing roadway safety and mobility. A key focus is how LLMs are adapted -- via architectural, training, prompting, and multimodal strategies -- to bridge the "modality gap" with transportation's unique spatio-temporal and physical data. The review systematically analyzes diverse LLM applications in mobility (e.g., traffic flow prediction, signal control) and safety (e.g., crash analysis, driver behavior assessment,). Enabling technologies such as V2X integration, domain-specific foundation models, explainability frameworks, and edge computing are also examined. Despite significant potential, challenges persist regarding inherent LLM limitations (hallucinations, reasoning deficits), data governance (privacy, bias), deployment complexities (sim-to-real, latency), and rigorous safety assurance. Promising future research directions are highlighted, including advanced multimodal fusion, enhanced spatio-temporal reasoning, human-AI collaboration, continuous learning, and the development of efficient, verifiable systems. This review provides a structured roadmap of current capabilities, limitations, and opportunities, underscoring LLMs' transformative potential while emphasizing the need for responsible innovation to realize safer, more intelligent transportation systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube