Papers
Topics
Authors
Recent
2000 character limit reached

Predicting ICU In-Hospital Mortality Using Adaptive Transformer Layer Fusion (2506.04924v2)

Published 5 Jun 2025 in cs.LG

Abstract: Early identification of high-risk ICU patients is crucial for directing limited medical resources. We introduce ALFIA (Adaptive Layer Fusion with Intelligent Attention), a modular, attention-based architecture that jointly trains LoRA (Low-Rank Adaptation) adapters and an adaptive layer-weighting mechanism to fuse multi-layer semantic features from a BERT backbone. Trained on our rigorous cw-24 (CriticalWindow-24) benchmark, ALFIA surpasses state-of-the-art tabular classifiers in AUPRC while preserving a balanced precision-recall profile. The embeddings produced by ALFIA's fusion module, capturing both fine-grained clinical cues and high-level concepts, enable seamless pairing with GBDTs (CatBoost/LightGBM) as ALFIA-boost, and deep neuro networks as ALFIA-nn, yielding additional performance gains. Our experiments confirm ALFIA's superior early-warning performance, by operating directly on routine clinical text, it furnishes clinicians with a convenient yet robust tool for risk stratification and timely intervention in critical-care settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.