Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FlashMLA-ETAP: Efficient Transpose Attention Pipeline for Accelerating MLA Inference on NVIDIA H20 GPUs (2506.01969v2)

Published 13 May 2025 in cs.DC, cs.AI, and cs.LG

Abstract: Efficient inference of Multi-Head Latent Attention (MLA) is challenged by deploying the DeepSeek-R1 671B model on a single Multi-GPU server. This paper introduces FlashMLA-ETAP, a novel framework that enhances MLA inference for the single-instance deployment scenario on NVIDIA H20 GPUs. We propose the Efficient Transpose Attention Pipeline (ETAP), which reconfigures attention computation through transposition to align the KV context length with the (M)-dimension in WGMMA operations, significantly reducing redundant computations. FlashMLA-ETAP achieves a 2.78x speedup over FlashMLA at 64K sequence length (batch size 16), with 5.24x and 4.94x improvements over FlashAttention-3 and FlashInfer, respectively, while maintaining numerical stability with a 15.2x lower RMSE ((1.25 \times 10{-5})) than FlashAttention-3. Furthermore, ETAP's design enables seamless integration into frameworks like FlashAttention-3 and FlashInfer, supported by a detailed theoretical analysis. Our work addresses a critical gap in resource-constrained inference, offering a scalable solution for mid-tier GPUs and paving the way for broader adoption in hardware-aware optimization. Code is available at https://github.com/pengcuo/FlashMLA-ETAP.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube