Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Synthetic Data Augmentation using Pre-trained Diffusion Models for Long-tailed Food Image Classification (2506.01368v1)

Published 2 Jun 2025 in cs.CV

Abstract: Deep learning-based food image classification enables precise identification of food categories, further facilitating accurate nutritional analysis. However, real-world food images often show a skewed distribution, with some food types being more prevalent than others. This class imbalance can be problematic, causing models to favor the majority (head) classes with overall performance degradation for the less common (tail) classes. Recently, synthetic data augmentation using diffusion-based generative models has emerged as a promising solution to address this issue. By generating high-quality synthetic images, these models can help uniformize the data distribution, potentially improving classification performance. However, existing approaches face challenges: fine-tuning-based methods need a uniformly distributed dataset, while pre-trained model-based approaches often overlook inter-class separation in synthetic data. In this paper, we propose a two-stage synthetic data augmentation framework, leveraging pre-trained diffusion models for long-tailed food classification. We generate a reference set conditioned by a positive prompt on the generation target and then select a class that shares similar features with the generation target as a negative prompt. Subsequently, we generate a synthetic augmentation set using positive and negative prompt conditions by a combined sampling strategy that promotes intra-class diversity and inter-class separation. We demonstrate the efficacy of the proposed method on two long-tailed food benchmark datasets, achieving superior performance compared to previous works in terms of top-1 accuracy.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.