Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single-Stage Heavy-Tailed Food Classification (2307.00182v1)

Published 1 Jul 2023 in cs.CV

Abstract: Deep learning based food image classification has enabled more accurate nutrition content analysis for image-based dietary assessment by predicting the types of food in eating occasion images. However, there are two major obstacles to apply food classification in real life applications. First, real life food images are usually heavy-tailed distributed, resulting in severe class-imbalance issue. Second, it is challenging to train a single-stage (i.e. end-to-end) framework under heavy-tailed data distribution, which cause the over-predictions towards head classes with rich instances and under-predictions towards tail classes with rare instance. In this work, we address both issues by introducing a novel single-stage heavy-tailed food classification framework. Our method is evaluated on two heavy-tailed food benchmark datasets, Food101-LT and VFN-LT, and achieves the best performance compared to existing work with over 5% improvements for top-1 accuracy.

Citations (7)

Summary

We haven't generated a summary for this paper yet.