Papers
Topics
Authors
Recent
2000 character limit reached

The Fastest Known First-Order Method for Minimizing Twice Continuously Differentiable Smooth Strongly Convex Functions

Published 1 Jun 2025 in math.OC, cs.SY, and eess.SY | (2506.01168v1)

Abstract: We consider iterative gradient-based optimization algorithms applied to functions that are smooth and strongly convex. The fastest globally convergent algorithm for this class of functions is the Triple Momentum (TM) method. We show that if the objective function is also twice continuously differentiable, a new, faster algorithm emerges, which we call $C2$-Momentum (C2M). We prove that C2M is globally convergent and that its worst-case convergence rate is strictly faster than that of TM, with no additional computational cost. We validate our theoretical findings with numerical examples, demonstrating that C2M outperforms TM when the objective function is twice continuously differentiable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.