MCP-Zero: Proactive Toolchain Construction for LLM Agents from Scratch (2506.01056v1)
Abstract: Function-calling has enabled LLMs to act as tool-using agents, but injecting thousands of tool schemas into the prompt is costly and error-prone. We introduce MCP-Zero, a proactive agent framework that lets the LLM itself decide when and which external tools to retrieve, thereby assembling a task-specific toolchain from scratch. The framework is built upon three components: (1) Proactive Tool Request, where the model emits a structured $\left<\operatorname{tool_assistant}\right>$ block that explicitly specifies the desired server and task; (2) Hierarchical Vector Routing, a coarse-to-fine retrieval algorithm that first selects candidate servers and then ranks tools within each server based on the semantic similarity; (3) Iterative Proactive Invocation, enabling multi-round, cross-domain toolchain construction with minimal context overhead, and allowing the model to iteratively revise its request when the returned tools are insufficient. To evaluate our approach we also compile MCP-tools, a retrieval dataset comprising 308 MCP servers and 2,797 tools extracted from the official Model-Context-Protocol repository and normalized into a unified JSON schema. Experiments show that MCP-Zero (i) effectively addresses the context overhead problem of existing methods and accurately selects the correct tool from a pool of nearly 3,000 candidates (248.1k tokens); (ii) reduces token consumption by 98\% on the APIbank while maintaining high accuracy; and (iii) supports multi-turn tool invocation with consistent accuracy across rounds. The code and dataset will be released soon.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.