Probing Neural Topology of Large Language Models (2506.01042v1)
Abstract: Probing LLMs has yielded valuable insights into their internal mechanisms by linking neural representations to interpretable semantics. However, how neurons functionally co-activate with each other to give rise to emergent capabilities remains largely unknown, hindering a deeper understanding and safer development of LLMs. In this work, we introduce graph probing, a method for uncovering the functional connectivity topology of LLM neurons and relating it to language generation performance. By analyzing internal neural graphs across diverse LLM families and scales, we discover a universal predictability of next-token prediction performance using only neural topology. This predictability is robust even when retaining just 1% of neuron connections or probing models after only 8 pretraining steps, highlighting the sparsity and early emergence of topological patterns. Further graph matching analysis suggests that, despite significant distinctions in architectures, parameters, and training data, different LLMs develop intricate and consistent neural topological structures that may form the foundation for their language generation abilities. Codes and data for the graph probing toolbox are released at https://github.com/DavyMorgan/LLM-graph-probing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.