Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

FLoE: Fisher-Based Layer Selection for Efficient Sparse Adaptation of Low-Rank Experts (2506.00495v1)

Published 31 May 2025 in cs.LG, cs.CL, and stat.ML

Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a widely adopted strategy for adapting pre-trained LLMs to downstream tasks, significantly reducing memory and computational costs. However, most existing PEFT techniques uniformly deploy LoRA adapters across all layers, disregarding the intrinsic heterogeneity of layer contributions and task-specific rank requirements. This uniform paradigm leads to redundant parameter allocation and suboptimal adaptation efficiency. To address these limitations, we propose FLoE, a novel PEFT framework that introduces two key innovations: (i) a Fisher information-guided importance scoring mechanism to dynamically identify task-critical transformer layers for MoE-based low-rank adaptation, enabling sparse adapter deployment; and (ii) a Bayesian optimization-driven rank allocator that automatically determines optimal LoRA ranks on specific datasets without exhaustive grid search. Extensive experiments across diverse LLMs and benchmarks reveal that FLoE achieves impressive efficiency-accuracy trade-offs, making FLoE particularly advantageous in resource-constrained environments that necessitate rapid adaptation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.