Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

M3ANet: Multi-scale and Multi-Modal Alignment Network for Brain-Assisted Target Speaker Extraction (2506.00466v1)

Published 31 May 2025 in eess.AS and cs.SD

Abstract: The brain-assisted target speaker extraction (TSE) aims to extract the attended speech from mixed speech by utilizing the brain neural activities, for example Electroencephalography (EEG). However, existing models overlook the issue of temporal misalignment between speech and EEG modalities, which hampers TSE performance. In addition, the speech encoder in current models typically uses basic temporal operations (e.g., one-dimensional convolution), which are unable to effectively extract target speaker information. To address these issues, this paper proposes a multi-scale and multi-modal alignment network (M3ANet) for brain-assisted TSE. Specifically, to eliminate the temporal inconsistency between EEG and speech modalities, the modal alignment module that uses a contrastive learning strategy is applied to align the temporal features of both modalities. Additionally, to fully extract speech information, multi-scale convolutions with GroupMamba modules are used as the speech encoder, which scans speech features at each scale from different directions, enabling the model to capture deep sequence information. Experimental results on three publicly available datasets show that the proposed model outperforms current state-of-the-art methods across various evaluation metrics, highlighting the effectiveness of our proposed method. The source code is available at: https://github.com/fchest/M3ANet.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.