Werewolf: A Straightforward Game Framework with TTS for Improved User Engagement (2506.00160v1)
Abstract: The growing popularity of social deduction game systems for both business applications and AI research has greatly benefited from the rapid advancements in LLMs, which now demonstrate stronger reasoning and persuasion capabilities. Especially with the raise of DeepSeek R1 and V3 models, LLMs should enable a more engaging experience for human players in LLM-agent-based social deduction games like Werewolf. Previous works either fine-tuning, advanced prompting engineering, or additional experience pool to achieve engaging text-format Werewolf game experience. We propose a novel yet straightforward LLM-based Werewolf game system with tuned Text-to-Speech(TTS) models designed for enhanced compatibility with various LLM models, and improved user engagement. We argue with ever enhancing LLM reasoning, extra components will be unnecessary in the case of Werewolf.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.