Papers
Topics
Authors
Recent
2000 character limit reached

Robust and Annotation-Free Wound Segmentation on Noisy Real-World Pressure Ulcer Images: Towards Automated DESIGN-R\textsuperscript{\textregistered} Assessment

Published 29 May 2025 in cs.CV | (2505.23392v1)

Abstract: Purpose: Accurate wound segmentation is essential for automated DESIGN-R scoring. However, existing models such as FUSegNet, which are trained primarily on foot ulcer datasets, often fail to generalize to wounds on other body sites. Methods: We propose an annotation-efficient pipeline that combines a lightweight YOLOv11n-based detector with the pre-trained FUSegNet segmentation model. Instead of relying on pixel-level annotations or retraining for new anatomical regions, our method achieves robust performance using only 500 manually labeled bounding boxes. This zero fine-tuning approach effectively bridges the domain gap and enables direct deployment across diverse wound types. This is an advance not previously demonstrated in the wound segmentation literature. Results: Evaluated on three real-world test sets spanning foot, sacral, and trochanter wounds, our YOLO plus FUSegNet pipeline improved mean IoU by 23 percentage points over vanilla FUSegNet and increased end-to-end DESIGN-R size estimation accuracy from 71 percent to 94 percent (see Table 3 for details). Conclusion: Our pipeline generalizes effectively across body sites without task-specific fine-tuning, demonstrating that minimal supervision, with 500 annotated ROIs, is sufficient for scalable, annotation-light wound segmentation. This capability paves the way for real-world DESIGN-R automation, reducing reliance on pixel-wise labeling, streamlining documentation workflows, and supporting objective and consistent wound scoring in clinical practice. We will publicly release the trained detector weights and configuration to promote reproducibility and facilitate downstream deployment.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.