Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Beyond Optimal Transport: Model-Aligned Coupling for Flow Matching (2505.23346v1)

Published 29 May 2025 in cs.CV

Abstract: Flow Matching (FM) is an effective framework for training a model to learn a vector field that transports samples from a source distribution to a target distribution. To train the model, early FM methods use random couplings, which often result in crossing paths and lead the model to learn non-straight trajectories that require many integration steps to generate high-quality samples. To address this, recent methods adopt Optimal Transport (OT) to construct couplings by minimizing geometric distances, which helps reduce path crossings. However, we observe that such geometry-based couplings do not necessarily align with the model's preferred trajectories, making it difficult to learn the vector field induced by these couplings, which prevents the model from learning straight trajectories. Motivated by this, we propose Model-Aligned Coupling (MAC), an effective method that matches training couplings based not only on geometric distance but also on alignment with the model's preferred transport directions based on its prediction error. To avoid the time-costly match process, MAC proposes to select the top-$k$ fraction of couplings with the lowest error for training. Extensive experiments show that MAC significantly improves generation quality and efficiency in few-step settings compared to existing methods. Project page: https://yexionglin.github.io/mac

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com