Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Flow Matching for Geometric Trajectory Simulation (2505.18647v1)

Published 24 May 2025 in cs.LG and cs.AI

Abstract: The simulation of N-body systems is a fundamental problem with applications in a wide range of fields, such as molecular dynamics, biochemistry, and pedestrian dynamics. Machine learning has become an invaluable tool for scaling physics-based simulators and developing models directly from experimental data. In particular, recent advances based on deep generative modeling and geometric deep learning have enabled probabilistic simulation by modeling complex distributions over trajectories while respecting the permutation symmetry that is fundamental to N-body systems. However, to generate realistic trajectories, existing methods must learn complex transformations starting from uninformed noise and do not allow for the exploitation of domain-informed priors. In this work, we propose STFlow to address this limitation. By leveraging flow matching and data-dependent couplings, STFlow facilitates physics-informed simulation of geometric trajectories without sacrificing model expressivity or scalability. Our evaluation on N-body dynamical systems, molecular dynamics, and pedestrian dynamics benchmarks shows that STFlow produces significantly lower prediction errors while enabling more efficient inference, highlighting the benefits of employing physics-informed prior distributions in probabilistic geometric trajectory modeling.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.