Papers
Topics
Authors
Recent
2000 character limit reached

LLMs for Supply Chain Management (2505.18597v1)

Published 24 May 2025 in cs.AI, cs.LG, and stat.AP

Abstract: The development of LLMs has provided new tools for research in supply chain management (SCM). In this paper, we introduce a retrieval-augmented generation (RAG) framework that dynamically integrates external knowledge into the inference process, and develop a domain-specialized SCM LLM, which demonstrates expert-level competence by passing standardized SCM examinations and beer game tests. We further employ the use of LLMs to conduct horizontal and vertical supply chain games, in order to analyze competition and cooperation within supply chains. Our experiments show that RAG significantly improves performance on SCM tasks. Moreover, game-theoretic analysis reveals that the LLM can reproduce insights from the classical SCM literature, while also uncovering novel behaviors and offering fresh perspectives on phenomena such as the bullwhip effect. This paper opens the door for exploring cooperation and competition for complex supply chain network through the lens of LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.