Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Preconditioned Langevin Dynamics with Score-Based Generative Models for Infinite-Dimensional Linear Bayesian Inverse Problems (2505.18276v1)

Published 23 May 2025 in stat.ML, cs.LG, cs.NA, and math.NA

Abstract: Designing algorithms for solving high-dimensional Bayesian inverse problems directly in infinite-dimensional function spaces - where such problems are naturally formulated - is crucial to ensure stability and convergence as the discretization of the underlying problem is refined. In this paper, we contribute to this line of work by analyzing a widely used sampler for linear inverse problems: Langevin dynamics driven by score-based generative models (SGMs) acting as priors, formulated directly in function space. Building on the theoretical framework for SGMs in Hilbert spaces, we give a rigorous definition of this sampler in the infinite-dimensional setting and derive, for the first time, error estimates that explicitly depend on the approximation error of the score. As a consequence, we obtain sufficient conditions for global convergence in Kullback-Leibler divergence on the underlying function space. Preventing numerical instabilities requires preconditioning of the Langevin algorithm and we prove the existence and the form of an optimal preconditioner. The preconditioner depends on both the score error and the forward operator and guarantees a uniform convergence rate across all posterior modes. Our analysis applies to both Gaussian and a general class of non-Gaussian priors. Finally, we present examples that illustrate and validate our theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 28 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube