Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RestoreVAR: Visual Autoregressive Generation for All-in-One Image Restoration (2505.18047v1)

Published 23 May 2025 in cs.CV and cs.AI

Abstract: The use of latent diffusion models (LDMs) such as Stable Diffusion has significantly improved the perceptual quality of All-in-One image Restoration (AiOR) methods, while also enhancing their generalization capabilities. However, these LDM-based frameworks suffer from slow inference due to their iterative denoising process, rendering them impractical for time-sensitive applications. To address this, we propose RestoreVAR, a novel generative approach for AiOR that significantly outperforms LDM-based models in restoration performance while achieving over $\mathbf{10\times}$ faster inference. RestoreVAR leverages visual autoregressive modeling (VAR), a recently introduced approach which performs scale-space autoregression for image generation. VAR achieves comparable performance to that of state-of-the-art diffusion transformers with drastically reduced computational costs. To optimally exploit these advantages of VAR for AiOR, we propose architectural modifications and improvements, including intricately designed cross-attention mechanisms and a latent-space refinement module, tailored for the AiOR task. Extensive experiments show that RestoreVAR achieves state-of-the-art performance among generative AiOR methods, while also exhibiting strong generalization capabilities.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube