Fast and Flexible Quantum-Inspired Differential Equation Solvers with Data Integration (2505.17046v1)
Abstract: Accurately solving high-dimensional partial differential equations (PDEs) remains a central challenge in computational mathematics. Traditional numerical methods, while effective in low-dimensional settings or on coarse grids, often struggle to deliver the precision required in practical applications. Recent machine learning-based approaches offer flexibility but frequently fall short in terms of accuracy and reliability, particularly in industrial contexts. In this work, we explore a quantum-inspired method based on quantized tensor trains (QTT), enabling efficient and accurate solutions to PDEs in a variety of challenging scenarios. Through several representative examples, we demonstrate that the QTT approach can achieve logarithmic scaling in both memory and computational cost for linear and nonlinear PDEs. Additionally, we introduce a novel technique for data-driven learning within the quantum-inspired framework, combining the adaptability of neural networks with enhanced accuracy and reduced training time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.