Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning non-equilibrium diffusions with Schrödinger bridges: from exactly solvable to simulation-free (2505.16644v1)

Published 22 May 2025 in stat.ML, cs.LG, and math.OC

Abstract: We consider the Schr\"odinger bridge problem which, given ensemble measurements of the initial and final configurations of a stochastic dynamical system and some prior knowledge on the dynamics, aims to reconstruct the "most likely" evolution of the system compatible with the data. Most existing literature assume Brownian reference dynamics and are implicitly limited to potential-driven dynamics. We depart from this regime and consider reference processes described by a multivariate Ornstein-Uhlenbeck process with generic drift matrix $\mathbf{A} \in \mathbb{R}{d \times d}$. When $\mathbf{A}$ is asymmetric, this corresponds to a non-equilibrium system with non-conservative forces at play: this is important for applications to biological systems, which are naturally exist out-of-equilibrium. In the case of Gaussian marginals, we derive explicit expressions that characterise the solution of both the static and dynamic Schr\"odinger bridge. For general marginals, we propose mvOU-OTFM, a simulation-free algorithm based on flow and score matching for learning the Schr\"odinger bridge. In application to a range of problems based on synthetic and real single cell data, we demonstrate that mvOU-OTFM achieves higher accuracy compared to competing methods, whilst being significantly faster to train.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com