Papers
Topics
Authors
Recent
2000 character limit reached

Envelope-based partial least squares in functional regression

Published 20 May 2025 in stat.ME | (2505.14876v1)

Abstract: In this article, we extend predictor envelope models to settings with multivariate outcomes and multiple, functional predictors. We propose a two-step estimation strategy, which first projects the function onto a finite-dimensional Euclidean space before fitting the model using existing approaches to envelope models. We first develop an estimator under a linear model with continuous outcomes and then extend this procedure to the more general class of generalized linear models, which allow for a variety of outcome types. We provide asymptotic theory for these estimators showing that they are root-$n$ consistent and asymptotically normal when the regression coefficient is finite-rank. Additionally we show that consistency can be obtained even when the regression coefficient has rank that grows with the sample size. Extensive simulation studies confirm our theoretical results and show strong prediction performance of the proposed estimators. Additionally, we provide multiple data analyses showing that the proposed approach performs well in real-world settings under a variety of outcome types compared with existing dimension reduction approaches.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.