Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Transductively Informed Inductive Program Synthesis (2505.14744v1)

Published 20 May 2025 in cs.PL, cs.AI, and cs.LG

Abstract: Abstraction and reasoning in program synthesis has seen significant progress through both inductive and transductive paradigms. Inductive approaches generate a program or latent function from input-output examples, which can then be applied to new inputs. Transductive approaches directly predict output values for given inputs, effectively serving as the function themselves. Current approaches combine inductive and transductive models via isolated ensembling, but they do not explicitly model the interaction between both paradigms. In this work, we introduce \acs{tiips}, a novel framework that unifies transductive and inductive strategies by explicitly modeling their interactions through a cooperative mechanism: an inductive model generates programs, while a transductive model constrains, guides, and refines the search to improve synthesis accuracy and generalization. We evaluate \acs{tiips} on two widely studied program synthesis domains: string and list manipulation. Our results show that \acs{tiips} solves more tasks and yields functions that more closely match optimal solutions in syntax and semantics, particularly in out-of-distribution settings, yielding state-of-the-art performance. We believe that explicitly modeling the synergy between inductive and transductive reasoning opens promising avenues for general-purpose program synthesis and broader applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: