Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SafetyNet: Detecting Harmful Outputs in LLMs by Modeling and Monitoring Deceptive Behaviors (2505.14300v1)

Published 20 May 2025 in cs.AI, cs.CL, and cs.LG

Abstract: High-risk industries like nuclear and aviation use real-time monitoring to detect dangerous system conditions. Similarly, LLMs need monitoring safeguards. We propose a real-time framework to predict harmful AI outputs before they occur by using an unsupervised approach that treats normal behavior as the baseline and harmful outputs as outliers. Our study focuses specifically on backdoor-triggered responses -- where specific input phrases activate hidden vulnerabilities causing the model to generate unsafe content like violence, pornography, or hate speech. We address two key challenges: (1) identifying true causal indicators rather than surface correlations, and (2) preventing advanced models from deception -- deliberately evading monitoring systems. Hence, we approach this problem from an unsupervised lens by drawing parallels to human deception: just as humans exhibit physical indicators while lying, we investigate whether LLMs display distinct internal behavioral signatures when generating harmful content. Our study addresses two critical challenges: 1) designing monitoring systems that capture true causal indicators rather than superficial correlations; and 2)preventing intentional evasion by increasingly capable "Future models''. Our findings show that models can produce harmful content through causal mechanisms and can become deceptive by: (a) alternating between linear and non-linear representations, and (b) modifying feature relationships. To counter this, we developed Safety-Net -- a multi-detector framework that monitors different representation dimensions, successfully detecting harmful behavior even when information is shifted across representational spaces to evade individual monitors. Our evaluation shows 96% accuracy in detecting harmful cases using our unsupervised ensemble approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube