Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LMP: Leveraging Motion Prior in Zero-Shot Video Generation with Diffusion Transformer (2505.14167v1)

Published 20 May 2025 in cs.CV

Abstract: In recent years, large-scale pre-trained diffusion transformer models have made significant progress in video generation. While current DiT models can produce high-definition, high-frame-rate, and highly diverse videos, there is a lack of fine-grained control over the video content. Controlling the motion of subjects in videos using only prompts is challenging, especially when it comes to describing complex movements. Further, existing methods fail to control the motion in image-to-video generation, as the subject in the reference image often differs from the subject in the reference video in terms of initial position, size, and shape. To address this, we propose the Leveraging Motion Prior (LMP) framework for zero-shot video generation. Our framework harnesses the powerful generative capabilities of pre-trained diffusion transformers to enable motion in the generated videos to reference user-provided motion videos in both text-to-video and image-to-video generation. To this end, we first introduce a foreground-background disentangle module to distinguish between moving subjects and backgrounds in the reference video, preventing interference in the target video generation. A reweighted motion transfer module is designed to allow the target video to reference the motion from the reference video. To avoid interference from the subject in the reference video, we propose an appearance separation module to suppress the appearance of the reference subject in the target video. We annotate the DAVIS dataset with detailed prompts for our experiments and design evaluation metrics to validate the effectiveness of our method. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in generation quality, prompt-video consistency, and control capability. Our homepage is available at https://vpx-ecnu.github.io/LMP-Website/

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.