Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FinMaster: A Holistic Benchmark for Mastering Full-Pipeline Financial Workflows with LLMs (2505.13533v1)

Published 18 May 2025 in cs.AI, cs.LG, and q-fin.GN

Abstract: Financial tasks are pivotal to global economic stability; however, their execution faces challenges including labor intensive processes, low error tolerance, data fragmentation, and tool limitations. Although LLMs have succeeded in various natural language processing tasks and have shown potential in automating workflows through reasoning and contextual understanding, current benchmarks for evaluating LLMs in finance lack sufficient domain-specific data, have simplistic task design, and incomplete evaluation frameworks. To address these gaps, this article presents FinMaster, a comprehensive financial benchmark designed to systematically assess the capabilities of LLM in financial literacy, accounting, auditing, and consulting. Specifically, FinMaster comprises three main modules: i) FinSim, which builds simulators that generate synthetic, privacy-compliant financial data for companies to replicate market dynamics; ii) FinSuite, which provides tasks in core financial domains, spanning 183 tasks of various types and difficulty levels; and iii) FinEval, which develops a unified interface for evaluation. Extensive experiments over state-of-the-art LLMs reveal critical capability gaps in financial reasoning, with accuracy dropping from over 90% on basic tasks to merely 40% on complex scenarios requiring multi-step reasoning. This degradation exhibits the propagation of computational errors, where single-metric calculations initially demonstrating 58% accuracy decreased to 37% in multimetric scenarios. To the best of our knowledge, FinMaster is the first benchmark that covers full-pipeline financial workflows with challenging tasks. We hope that FinMaster can bridge the gap between research and industry practitioners, driving the adoption of LLMs in real-world financial practices to enhance efficiency and accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube