Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Detecting Prefix Bias in LLM-based Reward Models (2505.13487v2)

Published 13 May 2025 in cs.CL

Abstract: Reinforcement Learning with Human Feedback (RLHF) has emerged as a key paradigm for task-specific fine-tuning of LLMs using human preference data. While numerous publicly available preference datasets provide pairwise comparisons of responses, the potential for biases in the resulting reward models remains underexplored. In this work, we introduce novel methods to detect and evaluate prefix bias -- a systematic shift in model preferences triggered by minor variations in query prefixes -- in LLM-based reward models trained on such datasets. We leverage these metrics to reveal significant biases in preference models across racial and gender dimensions. Our comprehensive evaluation spans diverse open-source preference datasets and reward model architectures, demonstrating susceptibility to this kind of bias regardless of the underlying model architecture. Furthermore, we propose a data augmentation strategy to mitigate these biases, showing its effectiveness in reducing the impact of prefix bias. Our findings highlight the critical need for bias-aware dataset design and evaluation in developing fair and reliable reward models, contributing to the broader discourse on fairness in AI.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube