Dribble Master: Learning Agile Humanoid Dribbling Through Legged Locomotion
Abstract: Humanoid soccer dribbling is a highly challenging task that demands dexterous ball manipulation while maintaining dynamic balance. Traditional rule-based methods often struggle to achieve accurate ball control due to their reliance on fixed walking patterns and limited adaptability to real-time ball dynamics. To address these challenges, we propose a two-stage curriculum learning framework that enables a humanoid robot to acquire dribbling skills without explicit dynamics or predefined trajectories. In the first stage, the robot learns basic locomotion skills; in the second stage, we fine-tune the policy for agile dribbling maneuvers. We further introduce a virtual camera model in simulation and design heuristic rewards to encourage active sensing, promoting a broader visual range for continuous ball perception. The policy is trained in simulation and successfully transferred to a physical humanoid robot. Experimental results demonstrate that our method enables effective ball manipulation, achieving flexible and visually appealing dribbling behaviors across multiple environments. This work highlights the potential of reinforcement learning in developing agile humanoid soccer robots. Additional details, video demonstrations, and code are available at https://zhuoheng0910.github.io/dribble-master/.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.