Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

del Pezzo surfaces with one bad prime over cyclotomic $\mathbb{Z}_\ell$-extensions (2505.11348v1)

Published 16 May 2025 in math.NT and math.AG

Abstract: Let $K$ be a number field and $S$ a finite set of primes of $K$. Scholl proved that there are only finitely many $K$-isomorphism classes of del Pezzo surfaces of any degree $1 \le d \le 9$ over $K$ with good reduction away from $S$. Let instead $K$ be the cyclotomic $\mathbb{Z}_5$-extension of $\mathbb{Q}$.In this paper, we show, for $d=3$, $4$, that there are infinitely many $\overline{\mathbb{Q}}$ isomorphism classes of del Pezzo surfaces, defined over $K$, with good reduction away from the unique prime above $5$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.