Papers
Topics
Authors
Recent
2000 character limit reached

Finetune-RAG: Fine-Tuning Language Models to Resist Hallucination in Retrieval-Augmented Generation (2505.10792v2)

Published 16 May 2025 in cs.CL

Abstract: Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to improve factuality in LLMs by grounding their outputs in retrieved documents. However, ensuring perfect retrieval of relevant information remains challenging, and when irrelevant content is passed downstream to an LLM, it can lead to hallucinations. In this work, we propose Finetune-RAG, a simple and effective fine-tuning approach that features the first-of-its-kind RAG training dataset constructed to mimic real-world imperfections. Experimental results show that Finetune-RAG improves factual accuracy by 21.2% over the base model. We also propose Bench-RAG, an LLM-as-a-judge evaluation pipeline that stress tests models under realistic imperfect retrieval scenarios. Our codebase and dataset are fully open sourced for community use.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.