Papers
Topics
Authors
Recent
2000 character limit reached

Robust Representation and Estimation of Barycenters and Modes of Probability Measures on Metric Spaces (2505.09609v2)

Published 14 May 2025 in math.ST, math.MG, stat.ME, and stat.TH

Abstract: This paper is concerned with the problem of defining and estimating statistics for distributions on spaces such as Riemannian manifolds and more general metric spaces. The challenge comes, in part, from the fact that statistics such as means and modes may be unstable: for example, a small perturbation to a distribution can lead to a large change in Fr\'echet means on spaces as simple as a circle. We address this issue by introducing a new merge tree representation of barycenters called the barycentric merge tree (BMT), which takes the form of a measured metric graph and summarizes features of the distribution in a multiscale manner. Modes are treated as special cases of barycenters through diffusion distances. In contrast to the properties of classical means and modes, we prove that BMTs are stable -- this is quantified as a Lipschitz estimate involving optimal transport metrics. This stability allows us to derive a consistency result for approximating BMTs from empirical measures, with explicit convergence rates. We also give a provably accurate method for discretely approximating the BMT construction and use this to provide numerical examples for distributions on spheres and shape spaces.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.