Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Efficient Multi-scale Leverage Effect Estimator under Dependent Microstructure Noise (2505.08654v1)

Published 13 May 2025 in stat.ME, econ.EM, and q-fin.ST

Abstract: Estimating the leverage effect from high-frequency data is vital but challenged by complex, dependent microstructure noise, often exhibiting non-Gaussian higher-order moments. This paper introduces a novel multi-scale framework for efficient and robust leverage effect estimation under such flexible noise structures. We develop two new estimators, the Subsampling-and-Averaging Leverage Effect (SALE) and the Multi-Scale Leverage Effect (MSLE), which adapt subsampling and multi-scale approaches holistically using a unique shifted window technique. This design simplifies the multi-scale estimation procedure and enhances noise robustness without requiring the pre-averaging approach. We establish central limit theorems and stable convergence, with MSLE achieving convergence rates of an optimal $n{-1/4}$ and a near-optimal $n{-1/9}$ for the noise-free and noisy settings, respectively. A cornerstone of our framework's efficiency is a specifically designed MSLE weighting strategy that leverages covariance structures across scales. This significantly reduces asymptotic variance and, critically, yields substantially smaller finite-sample errors than existing methods under both noise-free and realistic noisy settings. Extensive simulations and empirical analyses confirm the superior efficiency, robustness, and practical advantages of our approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.