Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bang-bang preparation of a quantum many-body ground state in a finite lattice: optimization of the algorithm with a tensor network (2505.08226v1)

Published 13 May 2025 in quant-ph and cond-mat.quant-gas

Abstract: A bang-bang (BB) algorithm prepares the ground state of a lattice quantum many-body Hamiltonian $H=H_1+H_2$ by evolving an initial product state alternating between $H_1$ and $H_2$. We optimize the algorithm with tensor networks in one and two dimensions. The optimization has two stages. In stage one, a shallow translationally-invariant circuit is optimized in an infinite lattice. In stage two, the infinite-lattice gate sequence is used as a starting point for a finite lattice where it remains optimal in the bulk. The prepared state requires optimization only at its boundary, within a healing length from lattice edges, and the gate sequence needs to be modified only within the causal cone of the boundary. We test the procedure in the 1D and 2D quantum Ising model near its quantum critical point employing, respectively, the matrix product state (MPS) and the pair-entangled projected state (PEPS). At the boundary already the infinite-lattice sequence turns out to provide a more accurate state than in the bulk.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube