Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Spoken Language Understanding on Unseen Tasks With In-Context Learning (2505.07731v1)

Published 12 May 2025 in cs.CL, cs.LG, and eess.AS

Abstract: Spoken language understanding (SLU) tasks involve diverse skills that probe the information extraction, classification and/or generation capabilities of models. In this setting, task-specific training data may not always be available. While traditional task-specific SLU models are unable to cater to such requirements, the speech-text LLMs offer a promising alternative with emergent abilities. However, out of-the-box, our evaluations indicate that the zero/few-shot performance of prominent open-source speech-text LLMs on SLU tasks are not up to the mark. In this paper, we introduce a novel approach to robust task-agnostic fine-tuning using randomized class labels. With this proposed fine-tuning, we illustrate that the performance of the speech-text LLMs on an unseen task is significantly improved over standard approaches. Critically, the proposed approach avoids the requirement of task-specific data annotations for enabling new tasks in speech-text LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.