RedTeamLLM: an Agentic AI framework for offensive security (2505.06913v1)
Abstract: From automated intrusion testing to discovery of zero-day attacks before software launch, agentic AI calls for great promises in security engineering. This strong capability is bound with a similar threat: the security and research community must build up its models before the approach is leveraged by malicious actors for cybercrime. We therefore propose and evaluate RedTeamLLM, an integrated architecture with a comprehensive security model for automatization of pentest tasks. RedTeamLLM follows three key steps: summarizing, reasoning and act, which embed its operational capacity. This novel framework addresses four open challenges: plan correction, memory management, context window constraint, and generality vs. specialization. Evaluation is performed through the automated resolution of a range of entry-level, but not trivial, CTF challenges. The contribution of the reasoning capability of our agentic AI framework is specifically evaluated.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.