Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Survey of Filtered Approximate Nearest Neighbor Search over the Vector-Scalar Hybrid Data (2505.06501v1)

Published 10 May 2025 in cs.DB

Abstract: Filtered approximate nearest neighbor search (FANNS), an extension of approximate nearest neighbor search (ANNS) that incorporates scalar filters, has been widely applied to constrained retrieval of vector data. Despite its growing importance, no dedicated survey on FANNS over the vector-scalar hybrid data currently exists, and the field has several problems, including inconsistent definitions of the search problem, insufficient framework for algorithm classification, and incomplete analysis of query difficulty. This survey paper formally defines the concepts of hybrid dataset and hybrid query, as well as the corresponding evaluation metrics. Based on these, a pruning-focused framework is proposed to classify and summarize existing algorithms, providing a broader and finer-grained classification framework compared to the existing ones. In addition, a review is conducted on representative hybrid datasets, followed by an analysis on the difficulty of hybrid queries from the perspective of distribution relationships between data and queries. This paper aims to establish a structured foundation for FANNS over the vector-scalar hybrid data, facilitate more meaningful comparisons between FANNS algorithms, and offer practical recommendations for practitioners. The code used for downloading hybrid datasets and analyzing query difficulty is available at https://github.com/lyj-fdu/FANNS

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: