Assessing Robustness to Spurious Correlations in Post-Training Language Models (2505.05704v1)
Abstract: Supervised and preference-based fine-tuning techniques have become popular for aligning LLMs with user intent and correctness criteria. However, real-world training data often exhibits spurious correlations -- arising from biases, dataset artifacts, or other "shortcut" features -- that can compromise a model's performance or generalization. In this paper, we systematically evaluate three post-training algorithms -- Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and KTO (Kahneman-Tversky Optimization) -- across a diverse set of synthetic tasks and spuriousness conditions. Our tasks span mathematical reasoning, constrained instruction-following, and document-grounded question answering. We vary the degree of spurious correlation (10% vs. 90%) and investigate two forms of artifacts: "Feature Ambiguity" and "Distributional Narrowness." Our results show that the models often but not always degrade under higher spuriousness. The preference-based methods (DPO/KTO) can demonstrate relative robustness in mathematical reasoning tasks. By contrast, SFT maintains stronger performance in complex, context-intensive tasks. These findings highlight that no single post-training strategy universally outperforms in all scenarios; the best choice depends on the type of target task and the nature of spurious correlations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.