Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VLM Q-Learning: Aligning Vision-Language Models for Interactive Decision-Making (2505.03181v1)

Published 6 May 2025 in cs.LG

Abstract: Recent research looks to harness the general knowledge and reasoning of LLMs into agents that accomplish user-specified goals in interactive environments. Vision-LLMs (VLMs) extend LLMs to multi-modal data and provide agents with the visual reasoning necessary for new applications in areas such as computer automation. However, agent tasks emphasize skills where accessible open-weight VLMs lag behind their LLM equivalents. For example, VLMs are less capable of following an environment's strict output syntax requirements and are more focused on open-ended question answering. Overcoming these limitations requires supervised fine-tuning (SFT) on task-specific expert demonstrations. Our work approaches these challenges from an offline-to-online reinforcement learning (RL) perspective. RL lets us fine-tune VLMs to agent tasks while learning from the unsuccessful decisions of our own model or more capable (larger) models. We explore an off-policy RL solution that retains the stability and simplicity of the widely used SFT workflow while allowing our agent to self-improve and learn from low-quality datasets. We demonstrate this technique with two open-weight VLMs across three multi-modal agent domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com