Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TV-SurvCaus: Dynamic Representation Balancing for Causal Survival Analysis (2505.01785v1)

Published 3 May 2025 in stat.ML and cs.LG

Abstract: Estimating the causal effect of time-varying treatments on survival outcomes is a challenging task in many domains, particularly in medicine where treatment protocols adapt over time. While recent advances in representation learning have improved causal inference for static treatments, extending these methods to dynamic treatment regimes with survival outcomes remains under-explored. In this paper, we introduce TV-SurvCaus, a novel framework that extends representation balancing techniques to the time-varying treatment setting for survival analysis. We provide theoretical guarantees through (1) a generalized bound for time-varying precision in estimation of heterogeneous effects, (2) variance control via sequential balancing weights, (3) consistency results for dynamic treatment regimes, (4) convergence rates for representation learning with temporal dependencies, and (5) a formal bound on the bias due to treatment-confounder feedback. Our neural architecture incorporates sequence modeling to handle temporal dependencies while balancing time-dependent representations. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that TV-SurvCaus outperforms existing methods in estimating individualized treatment effects with time-varying covariates and treatments. Our framework advances the field of causal inference by enabling more accurate estimation of treatment effects in dynamic, longitudinal settings with survival outcomes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube