Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Model-free identification in ill-posed regression (2505.01297v1)

Published 2 May 2025 in math.ST and stat.TH

Abstract: The problem of parsimonious parameter identification in possibly high-dimensional linear regression with highly correlated features is addressed. This problem is formalized as the estimation of the best, in a certain sense, linear combinations of the features that are relevant to the response variable. Importantly, the dependence between the features and the response is allowed to be arbitrary. Necessary and sufficient conditions for such parsimonious identification -- referred to as statistical interpretability -- are established for a broad class of linear dimensionality reduction algorithms. Sharp bounds on their estimation errors, with high probability, are derived. To our knowledge, this is the first formal framework that enables the definition and assessment of the interpretability of a broad class of algorithms. The results are specifically applied to methods based on sparse regression, unsupervised projection and sufficient reduction. The implications of employing such methods for prediction problems are discussed in the context of the prolific literature on overparametrized methods in the regime of benign overfitting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube