Design for a Digital Twin in Clinical Patient Care (2505.01206v1)
Abstract: Digital Twins hold great potential to personalize clinical patient care, provided the concept is translated to meet specific requirements dictated by established clinical workflows. We present a generalizable Digital Twin design combining knowledge graphs and ensemble learning to reflect the entire patient's clinical journey and assist clinicians in their decision-making. Such Digital Twins can be predictive, modular, evolving, informed, interpretable and explainable with applications ranging from oncology to epidemiology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.