Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spill The Beans: Exploiting CPU Cache Side-Channels to Leak Tokens from Large Language Models (2505.00817v1)

Published 1 May 2025 in cs.CR and cs.AI

Abstract: Side-channel attacks on shared hardware resources increasingly threaten confidentiality, especially with the rise of LLMs. In this work, we introduce Spill The Beans, a novel application of cache side-channels to leak tokens generated by an LLM. By co-locating an attack process on the same hardware as the victim model, we flush and reload embedding vectors from the embedding layer, where each token corresponds to a unique embedding vector. When accessed during token generation, it results in a cache hit detectable by our attack on shared lower-level caches. A significant challenge is the massive size of LLMs, which, by nature of their compute intensive operation, quickly evicts embedding vectors from the cache. We address this by balancing the number of tokens monitored against the amount of information leaked. Monitoring more tokens increases potential vocabulary leakage but raises the chance of missing cache hits due to eviction; monitoring fewer tokens improves detection reliability but limits vocabulary coverage. Through extensive experimentation, we demonstrate the feasibility of leaking tokens from LLMs via cache side-channels. Our findings reveal a new vulnerability in LLM deployments, highlighting that even sophisticated models are susceptible to traditional side-channel attacks. We discuss the implications for privacy and security in LLM-serving infrastructures and suggest considerations for mitigating such threats. For proof of concept we consider two concrete attack scenarios: Our experiments show that an attacker can recover as much as 80%-90% of a high entropy API key with single shot monitoring. As for English text we can reach a 40% recovery rate with a single shot. We should note that the rate highly depends on the monitored token set and these rates can be improved by targeting more specialized output domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: