Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Can Differentially Private Fine-tuning LLMs Protect Against Privacy Attacks? (2504.21036v2)

Published 28 Apr 2025 in cs.CR, cs.AI, and cs.LG

Abstract: Fine-tuning LLMs has become an essential strategy for adapting them to specialized tasks; however, this process introduces significant privacy challenges, as sensitive training data may be inadvertently memorized and exposed. Although differential privacy (DP) offers strong theoretical guarantees against such leakage, its empirical privacy effectiveness on LLMs remains unclear, especially under different fine-tuning methods. In this paper, we systematically investigate the impact of DP across fine-tuning methods and privacy budgets, using both data extraction and membership inference attacks to assess empirical privacy risks. Our main findings are as follows: (1) Differential privacy reduces model utility, but its impact varies significantly across different fine-tuning methods. (2) Without DP, the privacy risks of models fine-tuned with different approaches differ considerably. (3) When DP is applied, even a relatively high privacy budget can substantially lower privacy risk. (4) The privacy-utility trade-off under DP training differs greatly among fine-tuning methods, with some methods being unsuitable for DP due to severe utility degradation. Our results provide practical guidance for privacy-conscious deployment of LLMs and pave the way for future research on optimizing the privacy-utility trade-off in fine-tuning methodologies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube