Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TLoRA: Tri-Matrix Low-Rank Adaptation of Large Language Models (2504.18735v1)

Published 25 Apr 2025 in cs.LG and cs.AI

Abstract: We propose TLoRA, a novel tri-matrix low-rank adaptation method that decomposes weight updates into three matrices: two fixed random matrices and one trainable matrix, combined with a learnable, layer-wise scaling factor. This tri-matrix design enables TLoRA to achieve highly efficient parameter adaptation while introducing minimal additional computational overhead. Through extensive experiments on the GLUE benchmark, we demonstrate that TLoRA achieves comparable performance to existing low-rank methods such as LoRA and Adapter-based techniques, while requiring significantly fewer trainable parameters. Analyzing the adaptation dynamics, we observe that TLoRA exhibits Gaussian-like weight distributions, stable parameter norms, and scaling factor variability across layers, further highlighting its expressive power and adaptability. Additionally, we show that TLoRA closely resembles LoRA in its eigenvalue distributions, parameter norms, and cosine similarity of updates, underscoring its ability to effectively approximate LoRA's adaptation behavior. Our results establish TLoRA as a highly efficient and effective fine-tuning method for LLMs, offering a significant step forward in resource-efficient model adaptation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.