Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Streaming, Fast and Slow: Cognitive Load-Aware Streaming for Efficient LLM Serving (2504.17999v1)

Published 25 Apr 2025 in cs.HC and cs.LG

Abstract: Generative conversational interfaces powered by LLMs typically stream output token-by-token at a rate determined by computational budget, often neglecting actual human reading speeds and the cognitive load associated with the content. This mismatch frequently leads to inefficient use of computational resources. For example, in cloud-based services, streaming content faster than users can read appears unnecessary, resulting in wasted computational resources and potential delays for other users, particularly during peak usage periods. To address this issue, we propose an adaptive streaming method that dynamically adjusts the pacing of LLM streaming output in real-time based on inferred cognitive load. Our approach estimates the cognitive load associated with streaming content and strategically slows down the stream during complex or information-rich segments, thereby freeing computational resources for other users. Our statistical analysis of computational savings, combined with crowdsourced user studies, provides insights into the trade-offs between service efficiency and user satisfaction, demonstrating that our method can significantly reduce computational consumption up to 16.8\%. This context-aware computational resource management strategy presents a practical framework for enhancing system efficiency in cloud-based conversational AI interfaces without compromising user experience.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube