Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A stochastic method to estimate a zero-inflated two-part mixed model for human microbiome data (2504.15411v1)

Published 21 Apr 2025 in stat.ME, math.ST, and stat.TH

Abstract: Human microbiome studies based on genetic sequencing techniques produce compositional longitudinal data of the relative abundances of microbial taxa over time, allowing to understand, through mixed-effects modeling, how microbial communities evolve in response to clinical interventions, environmental changes, or disease progression. In particular, the Zero-Inflated Beta Regression (ZIBR) models jointly and over time the presence and abundance of each microbe taxon, considering the compositional nature of the data, its skewness, and the over-abundance of zeros. However, as for other complex random effects models, maximum likelihood estimation suffers from the intractability of likelihood integrals. Available estimation methods rely on log-likelihood approximation, which is prone to potential limitations such as biased estimates or unstable convergence. In this work we develop an alternative maximum likelihood estimation approach for the ZIBR model, based on the Stochastic Approximation Expectation Maximization (SAEM) algorithm. The proposed methodology allows to model unbalanced data, which is not always possible in existing approaches. We also provide estimations of the standard errors and the log-likelihood of the fitted model. The performance of the algorithm is established through simulation, and its use is demonstrated on two microbiome studies, showing its ability to detect changes in both presence and abundance of bacterial taxa over time and in response to treatment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.