Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

GSAC: Leveraging Gaussian Splatting for Photorealistic Avatar Creation with Unity Integration (2504.12999v1)

Published 17 Apr 2025 in cs.GR and cs.CV

Abstract: Photorealistic avatars have become essential for immersive applications in virtual reality (VR) and augmented reality (AR), enabling lifelike interactions in areas such as training simulations, telemedicine, and virtual collaboration. These avatars bridge the gap between the physical and digital worlds, improving the user experience through realistic human representation. However, existing avatar creation techniques face significant challenges, including high costs, long creation times, and limited utility in virtual applications. Manual methods, such as MetaHuman, require extensive time and expertise, while automatic approaches, such as NeRF-based pipelines often lack efficiency, detailed facial expression fidelity, and are unable to be rendered at a speed sufficent for real-time applications. By involving several cutting-edge modern techniques, we introduce an end-to-end 3D Gaussian Splatting (3DGS) avatar creation pipeline that leverages monocular video input to create a scalable and efficient photorealistic avatar directly compatible with the Unity game engine. Our pipeline incorporates a novel Gaussian splatting technique with customized preprocessing that enables the user of "in the wild" monocular video capture, detailed facial expression reconstruction and embedding within a fully rigged avatar model. Additionally, we present a Unity-integrated Gaussian Splatting Avatar Editor, offering a user-friendly environment for VR/AR application development. Experimental results validate the effectiveness of our preprocessing pipeline in standardizing custom data for 3DGS training and demonstrate the versatility of Gaussian avatars in Unity, highlighting the scalability and practicality of our approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: