Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Hessian stability and convergence rates for entropic and Sinkhorn potentials via semiconcavity (2504.11133v1)

Published 15 Apr 2025 in math.PR, math.AP, math.OC, and stat.ML

Abstract: In this paper we determine quantitative stability bounds for the Hessian of entropic potentials, i.e., the dual solution to the entropic optimal transport problem. Up to authors' knowledge this is the first work addressing this second-order quantitative stability estimate in general unbounded settings. Our proof strategy relies on semiconcavity properties of entropic potentials and on the representation of entropic transport plans as laws of forward and backward diffusion processes, known as Schr\"odinger bridges. Moreover, our approach allows to deduce a stochastic proof of quantitative stability entropic estimates and integrated gradient estimates as well. Finally, as a direct consequence of these stability bounds, we deduce exponential convergence rates for gradient and Hessian of Sinkhorn iterates along Sinkhorn's algorithm, a problem that was still open in unbounded settings. Our rates have a polynomial dependence on the regularization parameter.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.