On the rate of convergence of estimating the Hurst parameter of rough stochastic volatility models (2504.09276v1)
Abstract: In [8], easily computable scale-invariant estimator $\widehat{\mathscr{R}}s_n$ was constructed to estimate the Hurst parameter of the drifted fractional Brownian motion $X$ from its antiderivative. This paper extends this convergence result by proving that $\widehat{\mathscr{R}}s_n$ also consistently estimates the Hurst parameter when applied to the antiderivative of $g \circ X$ for a general nonlinear function $g$. We also establish an almost sure rate of convergence in this general setting. Our result applies, in particular, to the estimation of the Hurst parameter of a wide class of rough stochastic volatility models from discrete observations of the integrated variance, including the fractional stochastic volatility model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.