Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Feedback Loop Between Recommendation Systems and Reactive Users (2504.07105v1)

Published 14 Mar 2025 in cs.IR and cs.GT

Abstract: Recommendation systems underlie a variety of online platforms. These recommendation systems and their users form a feedback loop, wherein the former aims to maximize user engagement through personalization and the promotion of popular content, while the recommendations shape users' opinions or behaviors, potentially influencing future recommendations. These dynamics have been shown to lead to shifts in users' opinions. In this paper, we ask whether reactive users, who are cognizant of the influence of the content they consume, can prevent such changes by actively choosing whether to engage with recommended content. We first model the feedback loop between reactive users' opinion dynamics and a recommendation system. We study these dynamics under three different policies - fixed content consumption (a passive policy), and decreasing or adaptive decreasing content consumption (reactive policies). We analytically show how reactive policies can help users effectively prevent or restrict undesirable opinion shifts, while still deriving utility from consuming content on the platform. We validate and illustrate our theoretical findings through numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.