Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geo-OLM: Enabling Sustainable Earth Observation Studies with Cost-Efficient Open Language Models & State-Driven Workflows (2504.04319v1)

Published 6 Apr 2025 in cs.LG and cs.AI

Abstract: Geospatial Copilots hold immense potential for automating Earth observation (EO) and climate monitoring workflows, yet their reliance on large-scale models such as GPT-4o introduces a paradox: tools intended for sustainability studies often incur unsustainable costs. Using agentic AI frameworks in geospatial applications can amass thousands of dollars in API charges or requires expensive, power-intensive GPUs for deployment, creating barriers for researchers, policymakers, and NGOs. Unfortunately, when geospatial Copilots are deployed with open LLMs (OLMs), performance often degrades due to their dependence on GPT-optimized logic. In this paper, we present Geo-OLM, a tool-augmented geospatial agent that leverages the novel paradigm of state-driven LLM reasoning to decouple task progression from tool calling. By alleviating the workflow reasoning burden, our approach enables low-resource OLMs to complete geospatial tasks more effectively. When downsizing to small models below 7B parameters, Geo-OLM outperforms the strongest prior geospatial baselines by 32.8% in successful query completion rates. Our method performs comparably to proprietary models achieving results within 10% of GPT-4o, while reducing inference costs by two orders of magnitude from \$500-\$1000 to under \$10. We present an in-depth analysis with geospatial downstream benchmarks, providing key insights to help practitioners effectively deploy OLMs for EO applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.